Calculus Chapter 11 AP Problems

Cat # 14 Let S be the series

es
$$S = \geq (\overline{1+t})$$
, where $t \neq 0$

 $S = \frac{1}{5} \left(\frac{t}{t} \right)^{h}$

- A) Find the value to which S converges when t = 1.
- B) Determine the values of \underline{t} for which S converges.
- C) Find all values of t that make the sum of the series S greater than 10.

2.

1.

Cat # 14 Consider the power series

 $\sum_{n=1}^{\infty} a_n x^n$

where $a_0 = 1$ and $a_n = \left(\frac{7}{n}\right) a_{n-1}$ for $n \ge 1$

A) Find the first 4 terms and the general term of the series.

B) For what values of x does the series converge? C) If $f(x) = \sum_{n=0}^{\infty} a_n x^n$ find the value of f'(1)

3. Cat #14

4.

A) Find the 1st three terms in Taylor series about x=0 for $f(x) = \frac{1}{1-2x}$

B) Find the interval of convergence for the series in Part A
C) Use partial fraction and the result from Part A to find the first five terms in the Taylor series about x=0 for g(x) = _____

$$(1-2x)(1-x)$$

Cat #14

Determine all values of x for which the series $\sum_{K=0}^{\infty} \frac{2^{K} x^{K}}{\ln(K+2)}$

converges.

5. Category #14 Let f be the function defined by:

$$f(\mathbf{x}) = \frac{1}{1 - 3\mathbf{x}}$$

- A) Write the first 4 terms of the Taylor series expansion of f(x) about x=0
- B) Find the general term
- C) Write the series using correct series notation
- D) Using 1^{α} 3 terms of the series, find an approximation of f(-.5)
- E) Find the value of f at
- F) How many terms are adequate for approximating f(-1/6) with an error not exceeding .02

 $f(x) = \frac{1}{x-1}$

- Category #14 Let f be the function defined by
 - (A) Write the 1^{a} 4 terms and general terms of the Taylor Series expansion of f(x) about x=2
 - B) Use the result from part (a) to find the 1^{st} 4 terms and general term of the series expansion about x=2 for

 $\ln |x-1|$

- C) Use the series in part (b) to compute a number that differs from ln 3/2 by less than .05. Justify.
- 7. Category #14

6:

8.

- A) Show that the series converges for p>1
 - $\sum_{n=2}^{\infty} \frac{1}{n^{p} (\ln n)}$
- B) Determine whether the series converges or diverges for p=1. Show your analysis.
- C) Show that the series diverges for
- Category #14

Let f be the function given by

 $0 \le p < 1$

 $f(t) = \frac{4}{1+t^2}$

 $G(x) = \int_{0}^{x} f(t) dt$

And G be the function given by

- A) Find the l^{π} 4 nonzero terms and general term for the power series expansion of f(t) about t=0.
- B) Find the 1^{a} 4 nonzero terms and general terms for the power series expansion of G(x) about x=0.
- C) Find the interval of convergence of the power series in part (b) (Your solution must include an analysis that justifies your answer)

HP Category + 17

A particle moves along the curve defined by the equation $y = x^3 - 3x$. The x-coordinate of the particle, x(t), satisfies the equation $\frac{dx}{dt} = \frac{1}{\sqrt{2t+1}}$, for $t \ge 0$ with initial condition x(0) = -4.

- (a) Find x(t) in terms of t.
- (b) Find $\frac{dy}{dt}$ in terms of t.
- (c) Find the location of the particle at time t = 4.
- . (d) Find the speed of the particle at time t=4.
 - (e) Find the total distance traveled from $0 \le t \le 3$.