Calculus Chapter 11 AP Problems

1. Cat \# 14

Cat \# 14
Let S be the series $\quad S=\sum_{n=0}^{\infty}\left(\frac{t}{1+t}\right)^{n}$, where $t \neq 0$
A) Find the value to which S converges when $t=1$.
B) Determine the values of \underline{t} for which S converges.
C) Find all values of t that make the sum of the series S greater than 10 .
2. Cat \# 14

Consider the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where $a_{0}=1$ and $a_{n}=\left(\frac{7}{n}\right) a_{n-1}$ for $n \geq 1$
A) Find the first 4 terms and the general term of the series.
B) For what values of x does the series converge?
C) If $f(x)=\sum_{n \times 0}^{\infty} a_{n} x^{n}$ find the value of $f^{\prime}(1)$
3. Cat \#14
A) Find the $1^{\text {t }}$ three terms in Taylor series about $x=0$ for $f(x)=\frac{1}{1-2 x}$
B) Find the interval of convergence for the series in Part A
C) Use partial fractiorm and the result from Part A to find the first five terms in the Taylor series about $\mathrm{x}=0$ for $\mathrm{g}(\mathrm{x})=$ \qquad
4. Cat \#14

Determine all values of x for which the series $\sum_{k=0}^{\infty} \frac{2^{k} x^{k}}{\ln (K+2)} \quad$ converges.
Justify
5. Category \#14 Let f be the function defined by:

$$
f(x)=\frac{1}{1-3 x}
$$

A) Write the first 4 terms of the Taylor series expansion of $\mathrm{f}(\mathrm{x})$ about $\mathrm{x}=0$
B) Find the general term
C) Write the series using correct series notation
D) Using $1^{51} 3$ terms of the series, find an approximation of $f(-.5)$

$$
x=-\frac{1}{6}
$$

E) Find the value of f at
F) How many terms are adequate for aproximating $f(-1 / 6)$ with an error not exceeding 02

$$
f(x)=\frac{1}{x-1}
$$

6. Category \#14 Let f be the function defined by

- A) Write the $1^{\pi} 4$ terms and general terms of the Taylor Series expansion of $\mathrm{f}(\mathrm{x})$ about $\mathrm{x}=2$
B) Use the result from part (a) to find the $1^{\text {th }} 4$ terms and general term of the series expansion about $\lambda=2$ for

$$
\ln |x-1|
$$

C) Use the series in part (b) to compute a number that differs from $\ln 3 / 2$ by less than .05. Justify.
7. Category \#14
A) Show that the series converges for $\mathrm{p}>1$

$$
\sum_{n=2}^{\infty} \frac{1}{n^{p}(\ln n)}
$$

B) Determine whether the series converges or diverges for $\mathrm{p}=1$. Show your analysis.
C) Show that the series diverges for

$$
0 \leq p<1
$$

8. Category \#14

Let f be the function given by

$$
f(t)=\frac{4}{1+t^{2}}
$$

And G be the function given by

$$
G(x)=\int_{0}^{x} f(t) d t
$$

A) Find the $1^{5} 4$ nonzero terms and general term for the power series expansion of $f(t)$ about $t=0$.
B) Find the $1^{\pi} 4$ nonzero terms and general terms for the power series expansion of $G(x)$ about $x=0$.
C). Find the interval of convergence of the power series in part (b). (Your solution must include an analysis that justifies your answer)

A particle moves along the curve defined by the equation $y=x^{3}-3 x$. The x-coordinate of the particle, $x(t)$, satisfies the equation $\frac{d x}{d t}=\frac{1}{\sqrt{2 t+1}}$, for $t \geq 0$, with initial condition $x(0)=-4$,
(a) Find $x(t)$ in terms of t.
(b) Find $\frac{d y}{d t}$ in terms of t.
(c) Find the location, of the particle at time $t=4$.
(d) Find the speed of the particle at time $t=4$.
(e) Find the total distance traveled from $0 \leq t \leq 3$.

