(1.) A kite flies according to the parametric equations:

$$
\begin{aligned}
& x=t / 8 \\
& y=-(3 / 64)(t)(t-128)
\end{aligned}
$$

where t is measured in seconds and $0<t \leq 90$
A) How high is the kite above the ground at time $t=32$ seconds?
B) At what rate is the kite rising at $t=32$ seconds?
C.) At what rate is the string being reeled out at $t=32$ seconds?
D) At what time does the kite start to lose altitude? Justify
(2.) Consider the cardioid

$$
r=1-\cos \theta
$$

A) Sketch
B) Find the area of the region in the 1^{x} quadrant within the cardioid.
C) Find the entire area with in the cardioid.
(3)

A particle moves in the plane so that its x and y coordinates vary with time according to the equations.

$$
\begin{aligned}
& x=\frac{1}{2} t^{3}-6 t \\
& y=\frac{1}{2} t^{2} \\
& \text { A) Sketch the path of the particle over the interval } 0 \leq 1 \leq 4 \\
& \text { B) Represent the curve using only } x \text { and } y \text {. Eliminate the parameter, } t \\
& \text { C) Find dy/dx when } t=4
\end{aligned}
$$

4. Consider the cardioid $\Gamma=4+4 \cos \theta$ and the circle $r=6$
A) Sketch the 2 curves on one axes
B) Find the area of the region that is inside the cardioid and outside the circle Shaw S and all steps that lead to your solution.
(5) Consider the curve:

$$
r=\frac{1}{2}+\cos \theta
$$

A) Sketch the limacon
B) Find the area of the region in the loop
(6.) The path of a particle is given for time $t>0$ by the parametric equations:

$$
y=3 t^{2} \quad \text { and } \quad x=t+\frac{2}{t}
$$

A) Find the coordinates of each point on the path where the velocity of the particle in the x direction is zero.
B) Find $d y / d x$ when $t=1$
C) Find $\frac{d^{2} y}{d x^{2}}$ when $y=12$
(7.) Find the length of the curve of the cardioid

$$
r=1+\sin \theta
$$

(8)A) What is the set of all values of b for which the graphs of $y=2 x+b$ and $y^{2}=4 x$ intersect in 2 distinct points?
B) In the case $b=-4$, find area of the region enclosed by $y=2 x-4$ and $y^{2}=4 \mathrm{x}$.
C) In the case $b=0$, find the volume of the solid generated by revolving about the x -axis the region bounded by $\mathrm{y}=2 \mathrm{x}+0$ and $\mathrm{y}^{2}=4 \mathrm{x}$
(9) A) A solid is constructed so that it has a circular base of radius r centimeters and every plane section perpendicular to a certain diameter of the base is a square, with a side of the square being a chord of the circle. Find Volume of the solid.
B) If the solid described in part (A) expands so that the radius of the base increases at a constant rate of $1 / 2 \mathrm{~cm}$ per minute, how fast is the volume changing when the radius is 4 cm .

AP Category \# 14
A particle moves along the curve defined by the equation $\dot{y}=x^{3}-3 x$. The x-coordinate of the particle, $x(t)$, satisfies the equation $\frac{d x}{d t}=\frac{1}{\sqrt{2 t+1}}$, for $t \geq 0$ with initial condition $x(0)=-4$,
(a) Find $x(t)$ in terms of t.
(b) Find $\frac{d y}{d t}$ in terms of t.
(c) Find the location
of the particle at time $t=4$.
(d) Find the speed of the particle at time $t=4$.
(e) Find the total distance traveled from $0 \leq t \leq 3$.

