Review Chapter 4 Cat $* 6$ Ch. 4 Calculus BC
 - Category $=6$

The volume v of 0 cone is increasing at the rate of 28π cubic units per second. At the instant when the radius r of the cone is 3 units, its volume is 12π cubic units and the radius is increasing at $1 / 2$ unit per second.
A) At the instant when the radius of the cone is 3 units, what is the rate of change of the area of its base?
B). At the instant when the radius of the cone is 3 units, whet is the rate of change of its height h ?
c) At the instant when the radius of the cone is 3 units, whet is the instenteneous rete of change af the ares of its base with respect to its height?

$$
\text { Cat } \# 6
$$

Category $=6$
A) A point moves on a hyperbole $3 x^{2}-y^{2}=23$ so that its y-coordinate is increasing at a constant rate of 4 units per
3) . second. How fast is the x-coordinate changing when $x=4$? to the hyperbole $3 x^{2}-y^{2}=23$

(3)

Category * 7

A tank with a rectangular base and rectangular sides is to be open at the top. It is to be constructed so that its width is 4 meters and its volume is 36 cubic meters. If building the tank costs $\$ 10$ per square meter for the base and $\$ 5$ per square meter for the sides, what is the cost of the least expensive tank? Justify.
(4)

Category *8

$$
f(x)=x^{4 / 3} \frac{\text { Ch. } 4}{+4 x^{1 / 3}} \text { on }-8 \leq x \leq 8
$$

A) Find the coordinates of all points at which the tangent to the curve is a horizontal line.
B) Find the coordinates of all points at which the tangent to the curve is a vertical line.
C) Find the coordinates of the points at which the absolute max and absolute minimum occur.
D) For what values of x is this function concave down
E) Graph $-8 \leq x \leq 8$
(5)

Category * 8 Ch 4
A function f is continuous on the interval $(-\infty, \infty)$ such that:
$f(-4)=8, f(0)=0, f(2)=2, f(4)=4$ The functions f^{\prime} and $f^{\prime \prime}$
have these properties:

x	$-4<x<0$	$x=0$	$0<x<2$	$x=2$	$2<x<4$	$x=4$	$x>4$
f^{\prime}	-	u	+	0	+	u	-
$f^{\prime \prime}$	+	u	-	0	+	u	+

A) What are the x-coordinates of all absolute max and aby min pts of f on the interval $[-4,4]$ Justify
B) What are the x-coordinates of all points of inflection of f on the interval $[-4, \infty)$ Justify
C) Sketch

A rectangle $A B C D$ with sides parallel to the coordinates axes is inscribed in the region enclosed by the graph of $y=-4 x^{2}+4$ and the x-axis,
A) Find the x and y coordinates of C so that the area of rectangle $A B C D$ is a maximum.
B) The point C moves along the curve with its x-coordinate increasing at the constant rate of 2 units per second. Find the rate of change of the area of rectangle AECD when $x=1 / 2$

(7.) Category \#2 Ch.

Find the equation in point-slope form of the lines (there are two) through the point $(5,9)$ which is tangent to the graph of $y=x^{2}$
(8.) Category 2 Ch. 4

Find the equation in point-slope form of the tangent line to the graph of
$y=3 x^{2}+4 x-6$ which is parallel to the line $5 x-2 y-1=0$
(9.) $\frac{\text { Category }-4}{\text { A particle moves on the } x}$ at time t is given by $x(t)=(2 t-1)(t-1)^{2}$
A) At what time t is the particle at rest?
B) During what interval of time is the particle moving left? Justify.
C) At what time during the interval found in (b) is the particle moving most rapidly (speed $=\mid$ velocity $)$
A) A softball diamond has the shape of a square with sides 60 t long. If a player is running from second base to third base a speed of $24 \mathrm{ft} / \mathrm{sec}$. At what rate is her distance from home plate changing when she is 20 ft. from third?
B) A spherical snowball is melting and the radius is decreasi at a constant rate, changing from $12^{\prime \prime}$ to $8^{\prime \prime}$ in 45 mun. How fast was the Volume changing when radius was 10"?

B) If $y=3 x^{2}+x$; then the derivative of y with respect to $\frac{1}{x}$ is

Category $8 \quad$ Ch. 4
Determine the following about the graph $y=\frac{8}{x^{3}}-\frac{6}{x}$
A) If the graph symmetric to

1) The x-axis
2) The y-axis
3. The origin
B) Find the x-coordinates of each point at which y is a local max and local min. Justify.
c) Find the x-coordinates of each point of inflection Justify.

1 A conical reservoir has a depth of 24 feet and a circular top of radius 12 feet.

It is being filled so that the depth of water is increasing at a constant rate of 4 feet per hour.

Determine the rate in cubic feer per hour at which water is entering the reservoir when the depth is 5 feet.

(14) Category \#7 Ch. 4

A rectangle $P Q R S$ is inscribed, as sketched, in the region between the X -axis and the part of the graph $y=\cos 4 x$
\rightarrow specified by $-\frac{\pi}{8} \leq x \leq \frac{\pi}{8}$

Determine the coordinates of P for which the perimeter of $P Q R S$ is a maximum.

©Category \#2 Ch. 4.

Given the function f defined by $f^{\prime}(x)=x^{3}-x^{2}-4 x+4$.
(a) Find the zeros of f.
(b) Write an equation of the line tangent to the graph of f at $x=-1$.
(c) The point (a, b) is on the graph of f and the line tangent to the graph at (a, b) passes through the point $(0,-8)$ which is not on the graph of f. Find the values of a and b.

