1. Cat \#10

Find the area of region $R . R$ is the region bounded by the $x$-axis, $x=1$, and $y=1 / x^{2}$
2. Cat \#11 A) Find the volume of the solid generated by revolving $R$ about the $y$-axis. Let $R$ be the region in the $l^{\text {st }}$ quadrant bounded by the $x$ and $y$ axis, $y=e_{r}^{-x^{2}}$ and the line $x=k$
B) Evaluate the limit of the volume determined in part A as K Increases without bound:

3

4. Cat \#16 Which one of the following. is an improper integral?
A) $\int_{0}^{2} \frac{d x}{\sqrt{x+1}}$
B) $\int_{-1}^{1} \frac{d x}{1+x^{2}}$
c) $\int_{0}^{2} \frac{x d x}{1-x^{2}}$.
D) $\int_{0}^{1} \frac{\sin x}{\cos ^{2} x} d x$
5. Cat \#16 Which one of the following diverge?
A) $\int_{1}^{\infty} \frac{d x}{x^{2}}$
B) $\int_{0}^{\infty} \frac{d x}{e^{x}}$
c) $\int_{-1}^{1} \frac{d x}{\sqrt[3]{x}}$
D) $\int_{-1}^{1} \frac{d x}{x^{2}}$
6. Cat \#16

$$
\int_{0}^{\infty} \frac{1}{x^{2}+9} d x=
$$

7. Cat \#16

$$
\int_{-\infty}^{0} \frac{1}{(z-1)^{2}} d z=
$$

8. $\quad$ Cat \#16

$$
\int_{0}^{1} \frac{1}{x^{3}} d x=
$$

9. CaE\#1́

$$
\int_{0}^{2} \frac{1}{(x-1)^{2 / 3}} d x=
$$

10: Cat \#16.

$$
\int_{0}^{1} \frac{\ln x}{x} d x
$$

11. Cat \#11 Each cross section of a solid infinite horn cut by aplaneperpendicular to the $x$-axis for $-\infty<x \leq \ln 2$ is a circular disc with one diameter reaching from the $x$-axis to the curve $y=e^{x}$. Find the volume of the hor.
12. Cat \#8 Draw a picture of the meaning of
A): $\int_{0}^{3} \ln x d x$
B) $\int_{-4}^{\infty} e^{-x} d x$
13. Cat \#14 Determine whether the sequence converges or not. If so, find the limit.

$$
\left\{\left(\frac{n+3}{n+1}\right)^{n}\right\}_{n=1}^{+\infty}
$$

14. Cat \#10 Find the area, if possible, in the $1^{r}$ quadrant of region $\mathrm{R} . \mathrm{R}$ is bounded by the $x$-axis, $y$-axis, $x=4$, and $y=1 / \sqrt{x}$ hour) of a Piper Cub aircraft traveling due west is recorded every minute during the first 10 min after takeoff. Use the Trapezoidal Rule and Simpson's Rule to estimate the distance traveled after $10 \mathrm{~min} .\left(1 \mathrm{miN}_{\mathrm{N}}=\ldots \mathrm{hr},\right)(10 \mathrm{miN}=\ldots \mathrm{hr}$.

| $t$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v(t)$ | 0 | 50 | 60 | 80 | 90 | 100 | 95 | 85 | 80 | 75 | 85 |

An airplane's velocity is recorded at 5-min intervals during a 1-hour period with the following results, in mph:

$$
550,575,600,580,610,640,625,595,590,620,640,640,630
$$

Use Simpson's Rule to estimate the distance traveled during the hour,

Use Trapezoidal Rule to determine the average temperature in a

- museum over a 3-hour period, if the temperatures (in degrees (Celsius)
recorded at $15-\mathrm{min}$ intervals, are

$$
\begin{aligned}
& 21,21.3,21.5,21.8,21.6,21.2,20.8 \\
& 20.6,20.9,21.2,21.1,21.3,21.2
\end{aligned}
$$

