Pre Calculus
Chapter 9 Study Guide

1. Graph each point on the polar grid to the right.
(a) $D\left(-2, \frac{5 \pi}{4}\right)$
(b) $M\left(3,-\frac{13 \pi}{4}\right)$
(c) $H\left(2.5,240^{\circ}\right)$
2. Sketch the polar equations.
(a) $r=5.5$
(b) $\theta=-\frac{11 \pi}{3}$
3. Find the distance between $P_{1}\left(1,30^{0}\right)$ and $P_{2}\left(3,-\frac{\pi}{4}\right)$.
4. Identify the type of curve it represents.

$$
r^{2}=9 \cos 2 \theta
$$

5. Find the polar coordinates. Use $0 \leq$ $\theta<2 \pi$ and $r \geq 0$.
(a) $(2,2)$
(b) $(-2,-3)$
6. Find the rectangular coordinates of $\left(3,-\frac{5 \pi}{3}\right)$.
7. Write $x^{2}+y^{2}=3 x$ in polar form.
8. Write $r=\cos \theta$ in rectangular form.
9. Simplify the following.
(a) i^{93}
(b) $(-3+7 i)+(-4-3 i)$
(c) $(1+\sqrt{7} i)(-2-\sqrt{5} i)$
(d) $\frac{(2+6 i)}{(3-4 i)}$
10. Graph each number in the complex plane and find its absolute value.
(a) $2-3 i$
(b) $3 i$
11. Express each $-4+4 i$ in polar form.
12. Graph $4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$. Then express it in rectangular form.
13) Solve the system using algebra and trigonometry. Assume $0 \leq x<2 \pi$.

$$
\begin{aligned}
& r=\sin x \\
& r=\sqrt{3}-\sin x
\end{aligned}
$$

