1. Graph each point on the polar grid to the right.

(a) $D\left(-2, \frac{5\pi}{4}\right)$ (b) $M\left(3, -\frac{13\pi}{4}\right)$ (c) $H(2.5, 240^{\circ})$

2. Sketch the polar equations. (a) r = 5.5(b) $\theta = -\frac{11\pi}{3}$

3. Find the distance between $P_1(1, 30^0)$ and $P_2(3, -\frac{\pi}{4})$.

4. Identify the type of curve it represents.

$$r^2 = 9\cos 2\theta$$

9. Simplify the following. (a) i^{93} (b) (-3 + 7i) + (-4 - 3i)(c) $(1 + \sqrt{7}i)(-2 - \sqrt{5}i)$ (d) $\frac{(2+6i)}{(3-4i)}$

10. Graph each number in the complex plane and find its absolute value.
(a) 2 - 3i
(b) 3i

11. Express each -4 + 4i in polar form.

12. Graph $4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$. Then express it in rectangular form.

13) Solve the system using algebra and trigonometry. Assume $0 \le x < 2\pi$.

5. Find the polar coordinates. Use $0 \le \theta < 2\pi$ and $r \ge 0$. (a) (2,2) (b) (-2,-3)

6. Find the rectangular coordinates of $(3, -\frac{5\pi}{3})$.

7. Write $x^2 + y^2 = 3x$ in polar form.

8. Write $r = \cos \theta$ in rectangular form.

$$r = \sin x$$
$$r = \sqrt{3} - \sin x$$