Rules for Transformations of Graphs

Output	Transformation		Orientation/Type
$f(x)$	Original graph or parent graph.		
$f(x)+c$	Up c.		Vertical translation
$f(x)-c$	Down c.		Vertical translation
$f(x+c)$	Left c.		Horizontal translation
$f(x-c)$	Right c.		Horizontal translation
$-f(x)$	Reflects over the x-axis.		Vertical reflection
$f(-x)$	Reflects over the y-axis.		Horizontal reflection
c $f(x)$	If $c>1$, then the graph is stretched.	* Vertical scaling, y changes, x does not change. Ex: If $c=2$, then y is twice original.	Vertical stretch
	If $0<c<1$, then the graph is compressed.		Vertical compression
$f(c x)$	If $c>1$, then the graph is compressed.	* Horizontal scaling, x changes, y does not change. Ex: if $c=2$ then x is $\frac{1}{2}$ as much.	Horizontal compression
	If $0<c<1$, then the graph is stretched.		Horizontal stretch
$\|f(x)\|$	Reflection of the negative y-values over the x-axis to become positive while all of the positive y's stay the same.		Vertical
$f\|x\|$	Reflection of the positive x -values over the y-axis to replace the negative x -values creating a graph with y-axis symmetry.		Horizontal

