\qquad Period \qquad

Regular Pre-Calculus
Spring Semester

Ms. Montgomery Extra Trigonometry Review

Write exact answers in simplest radical form. Use the space below to do work if necessary.
1.

$$
\cos \left(\frac{5 \pi}{3}\right)=
$$

2.

$$
\csc \left(-\frac{3 \pi}{4}\right)=
$$

3.

$$
\tan \left(\frac{\pi}{2}\right)=
$$

\qquad

$$
\cot \left(-\frac{\pi}{4}\right)=
$$

7.

$$
\sin (-\pi)=
$$

\qquad
9.

$$
\sec (\pi)=
$$

11.

$$
\tan \left(\frac{7 \pi}{3}\right)=
$$

4. $\sin \left(\frac{11 \pi}{6}\right)=$ \qquad
5.
6.

$$
\sec \left(\frac{3 \pi}{2}\right)=
$$

\qquad
8. $\tan \left(-\frac{7 \pi}{6}\right)$ \qquad
10. $\sin \left(-\frac{2 \pi}{3}\right)=$ \qquad
12.
$\cot \left(\frac{5 \pi}{2}\right)=$ \qquad
13.

$$
\csc \left(\frac{2 \pi}{3}\right)=
$$

14.

$$
\sec \left(\frac{7 \pi}{4}\right)=
$$

15.

$$
\cot \left(-\frac{\pi}{6}\right)=
$$

16.

$$
\cos \left(\frac{3 \pi}{4}\right)=
$$

\qquad
17.

$$
\begin{aligned}
\csc \left(-\frac{11 \pi}{6}\right) & = \\
\sec \left(\frac{7 \pi}{6}\right) & = \\
\csc (4 \pi) & =
\end{aligned}
$$

18.
19.

Page 1 of 5
\qquad
\qquad

1. Find the reference angle for $\frac{15 \pi}{29}$	
2. Find the reference angle for 281°.	
3. Find the value of the six trigonometric functions of an angle \square in standard position if the point with coordinates (12, -16) liês on its terminal side.	
4. Suppose $\sec \partial=\sqrt{6}$ and the terminal side of the angle lies in Quadrant IV. Find the value of the other five trigonometric functions of the angle ∂ in standard position.	
5. Find one positive and one negative angle that are co-terminal with an angle measure -507°.	
6. Find one positive and one negative angle that are co-terminal with an angle measure $-\frac{29 \pi}{23}$.	
7. Write the ordered pair associated with the given unit circle radian measure A. $\frac{19 \pi}{6}$ B. $-\frac{37 \pi}{4}$	A. B.

Name \qquad Period \qquad

Evaluate each of the following functions. 1. $\cos ^{-1} 0$	
2. $\arcsin \frac{\sqrt{3}}{2}$	
3. $\tan ^{-1} \frac{\sqrt{3}}{3}$	
4. $\cot \left(\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$	
5. $\sec \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)$	
6. $\cos ^{-1}\left(\csc \left(-\frac{\pi}{2}\right)\right)$	
7. $\sec \left(\tan ^{-1}(-1)\right)$	
8. $\cot \left(\operatorname{arccsc} \frac{75}{21}\right)$	
9. $\sin ^{-1}\left(\cos \frac{5 \pi}{4}\right)$	
10. $\csc \left(\sin ^{-1}(-1)+\tan ^{-1}(-\sqrt{3})\right)$	

\qquad Period \qquad

Use the Law of Sines or the Law of Cosines or right triangle trigonometry to solve the following.
Round your answers to the nearest tenth.

1. Solve the triangle where $a=14, m \angle A=25^{\circ}, m \angle B=75^{\circ}$.
2. Solve the triangle where $c=15, b=30$ and $m \angle A=140^{\circ}$.
3. Solve the triangle where $a=4, b=3, m \angle A=40^{\circ}$.
4. Solve the triangle where $a=6, b=7$ and $m \angle C=20^{\circ}$.
5. Two angles of a triangle measure 32° and 53°. The longest side is 55 cm . Find the length of the shortest side.
6. A triangular-shaped lot of land has sides of length $120 \mathrm{~m}, 50 \mathrm{~m}$ and 150 m . What are the measures of the angles?
\qquad
7. A parallelogram has sides of 6 cm and 8 cm and a 65° angle. Find the lengths of the diagonals.
8. How long is the base of an isosceles triangle if each leg is 27 cm and each base angle measures 23° ?
9. A loading ramp 5 m long makes a 25° angle with the level ground. The ramp is replaced by another ramp 15 m long. Find the angle that the new ramp makes with the ground.
10. A baseball diamond is a square 90 feet on a side. The pitcher's mound is 60.5 feet from home plate. How far is it from the mound to first base?
11. Find the area of the triangle if $a=6, b=4$ and $c=5$. (Don't use Hero's Formula.)
12. Find the area of the triangle given $\mathrm{b}=10.9, m \angle \mathrm{~A}=46.35^{\circ}$, and $m \angle \mathrm{~B}=62.63^{\circ}$.
